Search for α -condensed state in ²⁰Ne

Y. Fujikawa, S. Adachi¹, T. Kawabata², M. Tsumura, A. Sakaue, K. Inaba, T. Doi, R. Fuji, H. Furuta,

T. Harada, S. Okamoto, R. Sekiya, A. Tamii³, N. Kobayashi³, T. Furuno³, M. Itoh⁴, Y. Matsuda⁴,

Y. Maeda
5, K. Nonaka
5, C. Iwamoto 6 and H. Akimune 7

Dept. of Phys., Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan

¹Research Center for Super Heavy Elements, Faculty of Science, Kyushu University, Motoka 744, Nishi-ku,

Fukuoka 819-0395, Japan

²Dept. of Phys., Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai

980-8578, Japan

²Faculty of Engineering, University of Miyazaki, 1-1 Gakuen, Kibanadai-nishi, Miyazaki 889-2192, Japan

²Center of Nuclear Study (CNS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

²Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan

Recently, in a low-density environment, it is theoretically suggested that alpha clusters become a main component of the nuclear matter [1] and these alpha clusters are condensed into the lowest orbit. On the other hand, it is possible that a low-density condensed state appears in a certain excited state in atomic nuclei. For example, the 0_2^+ state in ¹²C is a well-known 3α -condensed state, which is called the Hoyle state. Such n α -condensed states are theoretically predicted to appear in the heavier self-conjugate A = 4n nuclei [2], but have been established only in ⁸Be, ¹²C and ¹⁶O. Therefore, we search for the α -condensed state in the next A = 4n nucleus, ²⁰Ne.

In order to search for the α -condensed state in ²⁰Ne, we measured the exicitation energy spectrum of the inelastic alpha scattering at 0 degrees using the Grand Raiden spectrometer [3] at Research Center of Nuclear Physics (RCNP), Osaka University. In addition, we measured decaying particles from excited states in ²⁰Ne. Because the α -condensed states are considered to decay by emitting alpha particles, decaying particles from excited states from excited states provide useful information of these structures. For the decay particle measurement, we used the 6 segments Si detector array of 3 layer configuration (Fig. 1), which covered about 4% of all the solid angle. Because energies of decay α particles are low, it is difficult to measure these particles using the conventional ²⁰Ne gas target with several- μ m-thick organic gas sealing membranes. So, we used 100-nm-thick Silicon Nitride membranes. In Fig. 2, we show the newly-developed ²⁰Ne gas target cell.

Figure 1: Si detector array

Figure 2: Gas target cell

We used a 389 MeV alpha beam and obtained the excitation energy spectrum of ²⁰Ne. Moreover, we obtained the excitation energy specta by gating on both the alpha-decay and the proton-decay channels. In the alphadecay channel spectrum, we found several peaks above the 5α decay threshold at $E_x = 19.17$ MeV. In addition, we selected the decay events to the 0_6^+ state in ¹⁶O, which is the candidate for the 4α -condensed state [4–7], and obtained the excitation energy spectrum of ²⁰Ne for selected events. As shown in the bottom of Fig. 3, a prominent peak at $E_x = 23.5$ MeV was found. It suggests that the state at $E_x = 23.5$ MeV in ²⁰Ne strongly couples with the 0_6^+ state in ¹⁶O. Since the α -condensed states are expected to decay to the α -condensed states in lighter nuclei, this is a strong candidate for the 5α -condensed state.

However, the statistics were not good enough and we couldn't decide the spin and parity of the new state at $E_x = 23.5$ MeV. Now, we are planning a further measurement to acquire more statistics and to decide the alpha decay channel precisely. We will also measure the anglar distribution of the cross section to determine the spin and parity of the $E_x = 23.5$ MeV state, and establish the α -condensed state in ²⁰Ne.

Figure 3: Excitation energy spectra for the ${}^{20}\text{Ne}(\alpha, \alpha')$ reaction at $E_{\alpha} = 389$ MeV and $\theta = 0^{\circ}$. From top, spectra for the all events, the α decay events and the α decay events to the 0_6^+ state in ${}^{16}\text{O}$ are shown.

References

- [1] S. Typel et al., Phys. Rev. C 81, 015803 (2010).
- [2] T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004).
- [3] M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484–488 (1999).
- [4] Y. Funaki et al., Phys. Rev. Lett. 101, 082502 (2008).
- [5] Y. Funaki, Phys. Rev. C 97, 021304 (2018).
- [6] K. C. W. Li et al., Phys. Rev. C 95, 031302(R) (2017).
- [7] M. Barbui *el al.*, Phys. Rev. C **98**, 044601 (2018).